Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.494
Filtrar
1.
Adv Mater ; : e2403229, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598727

RESUMO

Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.

2.
Angew Chem Int Ed Engl ; : e202402624, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622075

RESUMO

Challenges such as shuttle effect have hindered the commercialization of lithium-sulfur batteries (LSBs), despite their potential as high-energy-density storage devices. To address these issues, we explore the integration of solar energy into LSBs, creating a photo-assisted lithium-sulfur battery (PA-LSB). The PA-LSB provides a novel and sustainable solution by coupling the photocatalytic effect to accelerate sulfur redox reactions. Herein, a perovskite quantum dot-loaded MOF material serves as a cathode for the PA-LSB, creating built-in electric fields at the micro-interface to extend the lifetime of photo-generated charge carriers. The band structure of the composite material aligns well with the electrochemical reaction potential of lithium-sulfur, enabling precise regulation of polysulfides in the cathode of the PA-LSB system. This is attributed to the selective catalysis of the liquid-solid reaction stage in the lithium-sulfur electrochemical process by photocatalysis. These contribute to the outstanding performance of PA-LSBs, particularly demonstrating a remarkably high reversible capacity of 679 mAh g-1 at 5 C, maintaining stable cycling for 1500 cycles with the capacity decay rate of 0.022% per cycle. Additionally, the photo-charging capability of the PA-LSB holds the potential to compensate for non-electric energy losses during the energy storage process, contributing to the development of lossless energy storage devices.

3.
Clin Transl Oncol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625494

RESUMO

PURPOSE: The treatment of the advanced non-small cell lung cancer (NSCLC) with KRAS mutation has been closely paid more attention. The aim of this study is to investigate the efficacy of different first-line regimens in advanced KRAS-mutated non-small cell lung cancer. METHODS: In our retrospective study, we collected patients with advanced NSCLC with KRAS mutation in Zhejiang Cancer Hospital between January 2015 and May 2023. We analyzed the benefit of different first-line therapy according to theraputic methods and the differential effect of the same treatment method among KRAS-mutated subtypes. We divided the patients into group A (A1, chemotherapy alone; A2, immunotherapy alone) and group B (B1, chemotherapy plus immunotherapy; B2, chemotherapy combined with antiangiogenic therapy; B3, chemotherapy combined with immunotherapy plus antiangiogenic therapy). The Kaplan-Meier survival curve was used to reflect the PFS and OS of different methods. The objective response rate (ORR) and the disease control rate (DCR) were used to evaluated the response. RESULTS: We enrolled 227 patients including eighty-two with KRAS G12C mutation. The ORR and DCR of first-line treatment in the overall population were 32.2% and 80.6% respectively. The median PFS was 6.7 months and the median OS was 17.4 months for the overall population. The PFS of the Group B was significantly better than that of the Group A (7.7 months vs 5.4 months, P = 0.003), while no significant difference in OS was observed (19.4 months vs 15.0 months, P = 0.077). In the Group B, chemotherapy combined immunotherapy with antiangiogenic therapy showed better PFS than chemotherapy plus immunotherapy (14.1 months vs 7.7 months, P = 0.049), and OS also showed that tendency of difference (31.9 months vs 19.3 months, P = 0.158). There was no statistically significant difference between KRAS G12C and non-G12C mutation according to first-line treatment methods, whereas patients with TP53 co-mutation showed a better survival benefit (OS, 23.7 vs 12.5 months, P = 0.023). CONCLUSION: In the first-line treatment, combination regimen has advantages over single regimen. Among them, chemotherapy combined with immunotherapy plus antiangiogenic therapy can achieve significant efficacy benefits.

4.
Sci Total Environ ; 927: 172262, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583605

RESUMO

South and Southeast Asia (SSA) emitted black carbon (BC) exerts potential effects on glacier and snow melting and regional climate change in the Tibetan Plateau. In this study, online BC measurements were conducted for 1 year at a remote village located at the terminus of the Mingyong Glacier below the Meili Snow Mountains. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to investigate the contribution and potential effect of SSA-emitted BC. In addition, variations in the light absorption characteristics of BC and brown carbon (BrC) were examined. The results indicated that the annual mean concentration of BC was 415 ± 372 ngm-3, with the highest concentration observed in April (monthly mean: 930 ± 484 ngm-3). BC exhibited a similar diurnal variation throughout the year, with two peaks observed in the morning (from 8:00 to 9:00 AM) and in the afternoon (from 4:00 to 5:00 PM), with even lower values at nighttime. At a short wavelength of 370 nm, the absorption coefficient (babs) reached its maximum value, and the majority of babs values were < 20 Mm-1, indicating that the atmosphere was not overloaded with BC. At the same wavelength, BrC substantially contributed to babs, with an annual mean of 25.2 % ± 12.8 %. SSA was the largest contributor of BC (annual mean: 51.1 %) in the study area, particularly in spring (65.6 %). However, its contributions reached 20.2 % in summer, indicating non-negligible emissions from activities in other regions. In the atmosphere, the SSA BC-induced radiative forcing (RF) over the study region was positive. While at the near surface, the RF exhibited a significant seasonal variation, with the larger RF values occurring in winter and spring. Overall, our findings highlight the importance of controlling BC emissions from SSA to protect the Tibetan Plateau against pollution-related glacier and snow cover melting.

5.
J Affect Disord ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615846

RESUMO

BACKGROUND: Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. METHODS: A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. RESULTS: Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. LIMITATIONS: The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. CONCLUSIONS: Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.

6.
Food Res Int ; 184: 114265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609243

RESUMO

Radio frequency explosion puffing (RFEP) is a novel oil-free puffing technique used to produce crispy textured and nutritious puffed snacks. This study aimed to investigate the effects of freezing at different temperatures (-20 °C, -40 °C, -80 °C) for14 h and freezing times (1 and 2 times) on the cellular structure of purple sweet potato and the quality of RFEP chips. The analysis of cell microstructure, conductivity, and rheology revealed that higher freezing temperatures and more freezing times resulted in increased damage to the cellular structure, leading to greater cell membrane permeability and decreased cell wall stiffness. However, excessive damage to cellular structure caused tissue structure to collapse. Compared with the control group (4 °C), the RFEP sample pre-frozen once at -40 °C had a 47.13 % increase in puffing ratio and a 61.93 % increase in crispness, while hardness decreased by 23.44 % (p < 0.05). There was no significant change in anthocyanin retention or color difference. X-ray microtomography demonstrated that the RFEP sample pre-frozen once at -40 °C exhibited a more homogeneous morphology and uniform pore distribution, resulting in the highest overall acceptability. In conclusion, freezing pre-treatment before RFEP can significantly enhance the puffing quality, making this an effective method for preparing oil-free puffing products for fruits and vegetables.


Assuntos
Ipomoea batatas , Congelamento , Explosões , Parede Celular , Temperatura Baixa
7.
Polymers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611184

RESUMO

Currently, fiber-reinforced polymer composites (FRPs) used for demanding structural applications predominantly utilize carbon, glass, and aramid fibers embedded in epoxy resin, albeit occasionally polyester and vinyl ester resins are also used. This study investigates the feasibility of employing recyclable and sustainable materials to formulate a composite suitable for load-bearing structural applications, particularly in scenarios involving low-velocity and high-velocity impacts (LVIs and HVIs, respectively). The paper presents a comparative analysis of the performance of basalt-Elium, a fully recyclable, sustainable, and environmentally friendly composite, with an epoxy-based counterpart. Moreover, an accurate and reliable numerical model has been developed and introduced through which the response of these composites can be examined efficiently and accurately under various loading states. The results of this investigation demonstrate the viability of the basalt-elium composite as a fully recyclable and sustainable material for crafting efficient and lightweight composites. Additionally, the accurately developed finite element model presented here can be used to assess the influence of several parameters on the composite, thereby optimizing it for a given situation.

8.
Foods ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611375

RESUMO

The traditional process of producing Zhenjiang aromatic vinegar faces challenges such as high water usage, wastewater generation, raw material losses, and limitations in mechanization and workshop conditions. This study introduces and evaluates a novel dry gelatinization process, focusing on fermentation efficiency and the vinegar flavor profile. The new process shows a 39.1% increase in alcohol conversion efficiency and a 14% higher yield than the traditional process. Vinegar produced through the dry gelatinization process has a stronger umami taste and a higher lactic acid concentration. Both processes detected 33 volatile substances, with the dry gelatinization process showing a notably higher concentration of 2-methylbutanal, which imparts a distinct fruity and chocolate aroma. These findings suggest that the dry gelatinization process outperforms the traditional process in several aspects.

9.
Water Sci Technol ; 89(7): 1787-1806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619903

RESUMO

The conventional building drainage system was constructed based on the theory of two-phase flow involving water and air. However, the drainage system contained a more intricate three-phase flow, encompassing water, air, and solids, which was relatively overlooked in research. This study addressed the impact of solids on pressure fluctuations, air flow rates, and hydraulic jump fullness within the drainage system, considering three factors: the mass factor, cross-section factor, and viscosity. The investigation was conducted within a single-stack system using both experimental methods and CFD simulations. The findings revealed a positive correlation between both positive and negative pressures and above three factors. The mass factor and the cross-section factor had a more significant impact on the negative pressure of the system. The maximum growth rates of negative pressure extremes under different mass and cross-section factors reached 7.72 and 16.52%, respectively. In contrast, the viscosity of fecal sludge had a slightly higher effect on the positive pressure fluctuation of the drainage system, with the maximum growth rate of positive pressure extremes at 3.41%.


Assuntos
Esgotos , Água , Pressão do Ar , Pressão , Viscosidade
10.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621933

RESUMO

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Assuntos
Ácido Abscísico , Mentha , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas
11.
ACS Appl Mater Interfaces ; 16(15): 19150-19157, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563649

RESUMO

High-temperature piezoelectric materials, which enable the accurate and reliable sensing of physical parameters to guarantee the functional operation of various systems under harsh conditions, are highly demanded. To this end, both large piezoelectricity and high Curie temperature are pivotal figures of merit (FOMs) for high-temperature piezoceramics. Unfortunately, despite intensive pursuits, it remains a formidable challenge to unravel the inverse correlation between these FOMs. Herein, a conceptual material paradigm of multiscale structural engineering was proposed to address this dilemma. The synergistic effects of phase structure reminiscent of a polymorphic phase boundary and refined domain morphology simultaneously contribute to a large piezoelectric coefficient d33 of 30.3 pC/N and a high Curie temperature TC of 740 °C in (LiCeNd) codoped Na0.5Bi2.5Nb2O9 (NBN-LCN) ceramics. More encouragingly, the system has exceptional thermal stability and is nonsusceptible to mechanical loading. This study not only demonstrates that the high-performance and robust NBN-LCN high-temperature piezoceramics hold great potential for implements under harsh conditions but also opens an avenue for integrating antagonistic properties for the enhancement of the collective performance in functional materials.

12.
J Agric Food Chem ; 72(15): 8536-8549, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38575146

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disease that has no effective treatment. Our proprietary probiotic mixture, Prohep, has been proven in a previous study to be helpful in reducing hepatocellular carcinoma (HCC) in vivo. However, its prospective benefits on the treatment of other liver diseases such as MASLD, which is one of the major risk factors in the development of HCC, are unclear. To investigate the potential of Prohep in modulating the development and progression of MASLD, we first explored the effect of Prohep supplementation via voluntary intake in a high-fat diet (HFD)-induced MASLD/metabolic dysfunction-associated steatohepatitis (MASH) murine model. Our results indicated that Prohep alleviated HFD-induced liver steatosis and reduced excessive hepatic lipid accumulation and improved the plasma lipid profile when compared with HFD-fed control mice through suppressing hepatic de novo lipogenesis and cholesterol biosynthesis gene expressions. In addition, Prohep was able to modulate the gut microbiome, modify the bile acid (BA) profile, and elevate fecal short-chain fatty acid (SCFA) levels. Next, in a prolonged HFD-feeding MASLD/MASH model, we observed the effectiveness of Prohep in preventing the transition from MASLD to MASH via amelioration in hepatic steatosis, inflammation, and fibrosis. Taken together, Prohep could ameliorate HFD-induced MASLD and control the MASLD-to-MASH progression in mice. Our findings provide distinctive insights into the development of novel microbial therapy for the management of MASLD and MASH.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Microbioma Gastrointestinal , Neoplasias Hepáticas , Probióticos , Animais , Camundongos , Metabolismo dos Lipídeos , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Lipídeos
13.
J Mater Chem B ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578014

RESUMO

On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) via competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn2+ to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn2+ strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn2+. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.

14.
Front Plant Sci ; 15: 1346364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567139

RESUMO

Doubled haploid (DH) technology provides an effective way to generate homozygous genetic and breeding materials over a short period of time. We produced three types of homozygous TtMTL gene-edited mutants (mtl-a, mtl-b, and mtl-ab) by CRISPR/Cas9 in durum wheat. PCR restriction enzymes and sequencing confirmed that the editing efficiency was up to 53.5%. The seed-setting rates of the three types of mutants ranged from 20% to 60%. Abnormal grain phenotypes of kernel, embryo, and both embryo and endosperm abortions were observed in the progenies of the mutants. The average frequency of embryo-less grains was 25.3%. Chromosome counting, guard cell length, and flow cytometry confirmed that the haploid induction rate was in the range of 3%-21% in the cross- and self-pollinated progenies of the mtl mutants (mtl-a and mtl-ab). Furthermore, we co-transformed two vectors, pCRISPR/Cas9-MTL and pBD68-(ZmR + ZmC1), into durum wheat, to pyramide Ttmtl-edited mutations and embryo-specifically expressed anthocyanin markers, and developed a homozygous durum haploid inducer with purple embryo (DHIPE). Using DHIPE as the male parent to be crossed with the wild-type Kronos, the grains with white embryos were identified as haploid, while the grains with purple embryos were diploid. These findings will promote the breeding of new tetraploid wheat varieties.

15.
Plants (Basel) ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38592791

RESUMO

The formation and development of tubers, the primary edible and economic organ of potatoes, directly affect their yield and quality. The regulatory network and mechanism of tuberization have been preliminarily revealed in recent years, but plenty of relevant genes remain to be discovered. A few candidate genes were provided due to the simplicity of sampling and result analysis of previous transcriptomes related to tuberization. We sequenced and thoroughly analyzed the transcriptomes of thirteen tissues from potato plants at the tuber proliferation phase to provide more reference information and gene resources. Among them, eight tissues were stolons and tubers at different developmental stages, which we focused on. Five critical periods of tuberization were selected to perform an analysis of differentially expressed genes (DEGs), according to the results of the tissue correlation. Compared with the unswollen stolons (Sto), 2751, 4897, 6635, and 9700 DEGs were detected in the slightly swollen stolons (Sto1), swollen stolons (Sto2), tubers of proliferation stage 1 (Tu1), and tubers of proliferation stage 4 (Tu4). A total of 854 transcription factors and 164 hormone pathway genes were identified in the DEGs. Furthermore, three co-expression networks associated with Sto-Sto1, Sto2-Tu1, and tubers of proliferation stages two to five (Tu2-Tu5) were built using the weighted gene co-expression network analysis (WGCNA). Thirty hub genes (HGs) and 30 hub transcription factors (HTFs) were screened and focalized in these networks. We found that five HGs were reported to regulate tuberization, and most of the remaining HGs and HTFs co-expressed with them. The orthologs of these HGs and HTFs were reported to regulate processes (e.g., flowering, cell division, hormone synthesis, metabolism and signal transduction, sucrose transport, and starch synthesis) that were also required for tuberization. Such results further support their potential to control tuberization. Our study provides insights and countless candidate genes of the regulatory network of tuberization, laying the foundation for further elucidating the genetic basis of tuber development.

16.
Sci Total Environ ; 927: 172310, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599406

RESUMO

The growing concerns about environmental sustainability and energy security, such as exhaustion of traditional fossil fuels and global carbon footprint growth have led to an increasing interest in alternative energy sources, especially bioenergy. Recently, numerous scenarios have been proposed regarding the use of bioenergy from different sources in the future energy systems. In this regard, one of the biggest challenges for scientists is managing, modeling, decision-making, and future forecasting of bioenergy systems. The development of machine learning (ML) techniques can provide new opportunities for modeling, optimizing and managing the production, consumption and environmental effects of bioenergy. However, researchers in bioenergy fields have not widely utilized the ML concepts and practices. Therefore, a comparative review of the current ML techniques used for bioenergy productions is presented in this paper. This review summarizes the common issues and difficulties existing in integrating ML with bioenergy studies, and discusses and proposes the possible solutions. Additionally, a detailed discussion of the appropriate ML application scenarios is also conducted in every sector of the entire bioenergy chain. This indicates the modernized conversion processes supported by ML techniques are imperative to accurately capture process-level subtleties, and thus improving techno-economic resilience and socio-ecological integrity of bioenergy production. All the efforts are believed to help in sustainable bioenergy production with ML technologies for the future.

17.
BMC Med Inform Decis Mak ; 24(1): 94, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600479

RESUMO

Electrocardiogram (ECG) signals are very important for heart disease diagnosis. In this paper, a novel early prediction method based on Nested Long Short-Term Memory (Nested LSTM) is developed for sudden cardiac death risk detection. First, wavelet denoising and normalization techniques are utilized for reliable reconstruction of ECG signals from extreme noise conditions. Then, a nested LSTM structure is adopted, which can guide the memory forgetting and memory selection of ECG signals, so as to improve the data processing ability and prediction accuracy of ECG signals. To demonstrate the effectiveness of the proposed method, four different models with different signal prediction techniques are used for comparison. The extensive experimental results show that this method can realize an accurate prediction of the cardiac beat's starting point and track the trend of ECG signals effectively. This study holds significant value for timely intervention for patients at risk of sudden cardiac death.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Morte Súbita Cardíaca/etiologia , Algoritmos
18.
Food Funct ; 15(8): 4527-4537, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38576413

RESUMO

Artificial sweeteners (ASs) have been widely added to food and beverages because of their properties of low calories and sweet taste. However, whether the consumption of ASs is causally associated with cancer risk is not clear. Here, we utilized the two-sample Mendelian randomization (MR) method to study the potential causal association. Genetic variants like single-nucleotide polymorphisms (SNPs) associated with exposure (AS consumption) were extracted from a genome-wide association study (GWAS) database including 64 949 Europeans and the influence of confounding was removed. The outcome was from 98 GWAS data and included several types of cancers like lung cancer, colorectal cancer, stomach cancer, breast cancer, and so on. The exposure-outcome SNPs were harmonized and then MR analysis was performed. The inverse-variance weighted (IVW) with random effects was used as the main analytical method accompanied by four complementary methods: MR Egger, weighted median, simple mode, and weighted mode. Sensitivity analyses consisted of heterogeneity, pleiotropy, and leave-one-out analysis. Our results demonstrated that ASs added to coffee had a positive association with high-grade and low-grade serous ovarian cancer; ASs added to tea had a positive association with oral cavity and pharyngeal cancers, but a negative association with malignant neoplasm of the bronchus and lungs. No other cancers had a genetic causal association with AS consumption. Our MR study revealed that AS consumption had no genetic causal association with major cancers. Larger MR studies or RCTs are needed to investigate small effects and support this conclusion.

19.
Eur J Radiol ; 175: 111456, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640823

RESUMO

PURPOSE: Early hypoperfusion changes exist in patients with aneurysmal subarachnoid hemorrhage (aSAH). We aimed to investigate a readily obtainable quantitative computed tomography perfusion (CTP) parameter that could assist in quickly identifying patients at risk of delayed cerebral ischemia (DCI) and poor 90-day functional outcomes on admission. METHODS: We prospectively collected data between 2021.04 and 2022.12. Preoperative CTP data were post-processed using RAPID software. The cortical blood flow insufficiency (CBFI) was defined as Time-to-maximum > 4.0 s. Patients were categorized into four groups according to CBFI volume distribution. To minimize differences among the groups, we employed stabilized inverse probability of treatment weighting (sIPTW). The primary outcome was DCI and poor 90-day functional outcomes (modified Rankin Scale, 3-6) was the secondary outcome. Multivariable Cox or Logistic analysis were performed to estimate the association between CBFI volume and the study outcomes, both before and after sIPTW. RESULTS: At baseline, the mean (SD) age of the 493 participants was 55.0 (11.8) years, and 299 (60.6%) were female. One hundred and seven participants with DCI and eighty-six participants with poor 90-day functional outcomes were identified. After sIPTW, CBFI volume demonstrated a significant association with DCI (Cox regression: Group 4 versus Group 1, HR 3.69, 95% CI 1.84-7.01) and poor 90-day functional outcomes (Logistic regression: Group 4 versus Group 1, OR 4.61, 95% CI 2.01-12.50). CONCLUSION: In this study, an elevated preoperative CBFI volume was associated with adverse outcomes in aSAH patients. More well-designed studies are needed to confirm this association.

20.
Pharmacol Res ; : 107186, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641176

RESUMO

Chimeric antigen receptor (CAR)-modified T cell therapy has achieved remarkable efficacy in treating hematological malignancies, but it confronts many challenges in treating solid tumors, such as the immunosuppressive microenvironment of the solid tumors. These factors reduce the antitumor activity of CAR-T cells in clinical trials. Therefore, we used the immunocytokine interleukin-12(IL-12) to enhance the efficacy of CAR-T cell therapy. In this study, we engineered CAR-IL12R54 T cells that targeted mesothelin (MSLN) and secreted a single-chain IL-12 fused to a scFv fragment R54 that recognized a different epitope on mesothelin. The evaluation of the anti-tumor activity of the CAR-IL12R54 T cells alone or in combination with anti-PD-1 antibody in vitro and in vivo was followed by the exploration of the functional mechanism by which the immunocytokine IL-12 enhanced the antitumor activity. CAR-IL12R54 T cells had potency to lyse mesothelin positive tumor cells in vitro. In vivo studies demonstrated that CAR-IL12R54 T cells were effective in controlling the growth of established tumors in a xenograft mouse model with fewer side effects than CAR-T cells that secreted naked IL-12. Furthermore, combination of PD-1 blockade antibody with CAR-IL12R54 T cells elicited durable anti-tumor responses. Mechanistic studies showed that IL12R54 enhanced Interferon-γ (IFN-γ) production and dampened the activity of regulatory T cells (Tregs). IL12R54 also upregulated CXCR6 expression in the T cells through the NF-κB pathway, which facilitated T cell infiltration and persistence in the tumor tissues. In summary, the studies provide a good therapeutic option for the clinical treatment of solid tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...